Software Testing
Judith S. Douglass, TAS, Inc.

Knowledge about software testing is critical not only for software designers, programmers, and
professional testers, but also for buyers and users. Most of us fall into at least the last category!

Why should software be tested?

The goals of software testing, no matter who is doing the testing or where it is done, are to achieve
confidence in the software and to reduce risk of errors caused by program "bugs." A bug is programming
code that results in program function or output that is other than required program function or output.
Bugs can be relatively innocuous (a typographical error on a screen), annoying (after a certain combination
of keystrokes the program bombs), or very serious (the calculation procedure for averaging nutrient data is
faulty).

Testing and debugging are not at all the same. Testing and test design focus on bug prevention and on

uncovering bugs. Debugging may be the logical consequence of testing. The purpose of debugging is to
find the code that led to program failure and to change the code accordingly.

183

There are ways that programmers can prevent or reduce program bugs. The source language can be
very important. Programmers can adhere to certain stylistic criteria and/or design methodologies. Static
analvsis can be done. Software inspections can be performed. However, testing is needed even if these
other features are incorporated.

Software testing can show some, but not all, defects in program code. Testing can demonstrate that the
program function is correct or incorrect and can demonstrate that the performance is correct or incorrect.
Testing can detect logic failure; this means that the program is doing what it was told to do, but that
someone's reasoning (the developer or programmer) was faulty in some way.

Who should be part of the software testing process?

The buyer and/or user of software must play a major role in the software testing process. In contracted
software development, personnel from the contracting institution should work with the developer during the
planning and design process so that all parties agree on what the final system will consist of and how the
system will look. Joel Gilman, in a Law Report column in the February 1991 Systems Integration (1)
suggests that a test-criteria document should be drawn up if possible and included in the orginal system
proposal or contract.

Buyers should consider software testing key features even for off-the-shelf software products. Bill
Hancock, in a column titled "Confessions of a testing fanatic" in the November 12, 1992 Digital News and
Review (2}, related a horror story about an off-the-shelf word processor program crashing, with work lost
prior to an important deadline. We've all come close to this at one time or another.

Programmers should be responsible for basic software testing. A programmer should never hand over
a program to a tester or testing department without first processing enough test cases to determine whether
the program is meeting specified requirements.

It should be noted, however, that testers and programmers have different goals when they are testing
software. Boris Beizer, in Sofiware Testing Technigues (3), an excellent basic book on testing, said that a
tester is “one who writes and/or executes tests of software with the intention of demonstrating that the
program does not work." He said that a programmer is "one whose tests (if any) are intended to show that
the program does work."

What is software testing?

Software testing is a process, the purpose of which is to prevent and uncover "bugs” in the software
and to determine whether systems meet specified requirements. It is by nature poorly defined, always
incomplete, costly, and time-consuming. Ii has been estimated that testing consumes more than half the
Iabor expended to produce a working program (3).

There are four general categories, often referred to as "stages," of software testing.

Unit testing is testing of the smallest testable piece of software (a single component of the system). The
purposes of unit testing are to assess whether the unit satisfies its functional specification and/or whether
its structure matches the intended design structure. Unit testing should be done by the programmer. There
are a variety of tools a programmer can use to assess whether all paths the software can take have been
tested.

184

In integration testing, the goal is to test what happens when units are combined. Usually if a problem 1s
found, it has to do with information passed between units.

System testing; as the name implies, is aimed at testing the entire system. If tries to find problems other
than those that can be attributed to units or interactions between units. In system testing, one might look at
performance, security issues, and other issues of these types.

Acceptance testing is a broad category that provides final certification that the system is ready for real-
world use. It may involve very intensive tests that look at the positive and negative aspects of the system.
Functionality is closely examined. For contracted or in-house software, errors found at the acceptance
testing stage usually involve some type of misunderstanding on the part of the developer or
miscommunication between buyer and developer.

There are other terms for testing which may be done during the course of one or more of the testing
stages. These include testing for reliability and usability, conformance to standards, interoperability, and
regression testing.

Reliability testing assesses acceptability considering intents, actions, and decision processes of users.
Measurement variables may include leamning time, task performance time, efror rates, eITor recovery time,
and end-user satisfaction.

Conformance testing checks conformance to standards. Qrganizations issuing standards related to software
include {but aren't limited to) the International Standards Organization, British Standards Institution,
American National Standards Institute, and the Institute of Electrical and Electronics Engineers. However,
there are other kinds of standards software can meet. For example, MS-DOS itself is a kind of a standard.

Interoperability testing assesses whether a system can work effectively with other systems meeting the same
standards.

Regression testing involves tests created for a previous version of the software. When the system has
undergone a change, testers usually repeat some or all of the tests performed on the last version of the
software just to make sure that the change didn't adversely affect an unrelated function.

‘When should the testing process begin?

Testing, of course, can't begin until some code is written. However, the festing process should begin
when the software development process begins. Time spent eliminating bugs is much shorter when testing
is planned during the design phase than at the end.

System requirements should be written down and agreed upon by all parties, and these requirements
specifications should be used as the basis of a testing plan. Software design objectives should include
testability.

When should the developer stop testing and deliver the product? The decision may be based on metrics
(measurements of error rates). However, the key decision will always be based on the resources available.
If testing staff have nothing else to do, and lots of time until the software is needed, one might be able to be
very cautious and extend testing at each stage for a long time. However, if the software was promised 6
months ago, and especially if a competitor is moving in, the developer might be willing to take the risk that
the program works without serious bugs, even if he or she knows about some minor bugs.

185

It all boils down to risk assessment and being able to project the point when it is more-or-less safe to
send out the product. If a faulty product is sent out, a new version can be released; however, this involves
a whole new set of risk assessments.

The cost of sending out a new version must of course be considered. But a developer also has to
consider the image of the company—sending out a new version can make a developer look responsive,
innovative, or incompetent, depending on the timing and on the extent of change.

‘Where should software be tested?

This depends a lot on what kind of testing is planned. Presumably, the programmer will do some
testing at his or her desk. If the company has testing facilities, or contracts out some of the testing, then
testing will take place in these facilities. Sometimes a "pilot company” is created to simulate user
conditions. And finally, some of the final acceptance testing should be performed at the buyer/user's
facilities.

How should a testing plan be written and executed?

Testing plans at each stage should be based on structured requirements. These requirements should be
written down and agreed upon by all parties before code is written. Structured requirements include any
relevant definitions and input, process, and output requirements. In test planning, the steps are to finalize
these requirements specifications, design the tests, map the tests to the requirements, and finally, designate
the test cases and/or acquire a test set.

Test case design is its own science. The goals are to identify all of the types of cases that might occur
under each scenario. Afier the code to be tested is written, the tester executes the planned tests, evaluates
the results, and provides feedback. This feedback becomes a matter of record for the system. People who
get the feedback would vary depending on the testing stage.

Examples of software tests
Example 1. Sample tests for food consumption analysis software

The TAS International Diet Research System® (TAS-DIET) uses U.S. Nationwide Food Consumption
Survey (NFCS) and Continuing Survey of Food Intakes by Individuals (CSFII) data to report on food
intake by the U.S. population and population subgroups. One of the definitions basic to the system is that
the "3-day population" consists of respondents (for the survey in question) for whom three full days of
survey data are available, regardless of whether food was actually consumed on any or all days. This
definition applies to the total survey population, but can be extended to each survey subpopulation defined
by the system; for example, the 3-day population of Hispanics consists of Hispanic respondents for whom
three full days of survey data are available, regardless of whether food was actually consumed on any or all
days.

In order to test whether the 3-day population definitions actually used by the system mest the
definitions set out in the system requirements, analyses of 3-day average food consumption by the total
population and each defined subpopulation should be performed and the results evaluated to determine N's
reported by the system.

186

Running the analyses with the total population and each defined subpopulation might seem like an
excessive number of test cases to test the definition of "3-day population” used by the system, but it really
is possible that the system could be using the correct definition when using data for the total population but
be totally off for one or more population subgroups.

To evaluate the results of these tests, the N's appearing on reports generated by the system should be
checked against USDA documentation for N's in the total population and applicable subgroups. Because
the documentation doesn't necessarily include N's for all of the population subgroups defined by the TAS
system, the N's for the subgroups should be added together to check that the sums equal the N for the total
population.

Example 2. Sample tests for food composition analysis seftware

A fictitious system, NUTRI-NOW, accepts an NDB number as input, retrieves appropriate nutrient
data, and prints the nutrient data to the screen. The system must accept valid NDB numbers but not invalid
numbers. There is only one processing requirement-to retrieve the most current USDA published nutrient
data for the input NDB number.

For output, the system must display an error message if the input NDB number is invalid; for valid
NDB numbers, the nutrient data must be shown in the appropriate order (which ordinarily would be
included in the requirement specification) and in the appropriate units (which ordinarily would be specified
for each nutrient).

In testing to see whether the system accepts valid NDB numbers, at least the lowest valid number and
the highest valid number should be tested. If there are invalid numbers in the middle somewhere, the
numbers before and after each of these numbers should be tested.

In testing to see whether the system rejects invalid NDB numbers, a wide variety of test cases should be
processed. These test cases should include, at a minimum, the number lower than the lowest valid number;
the number higher than the highest valid number; a number with spaces in the middle; a number with aipha
characters in the middle, a "number" with alpha characters at the beginning; a number with special
characters in it; and all zeros.

Summary

Testing should be more than a sofiware life-cycle phase, and testing is not debugging. Testing should
be carefully considered when designing software or planning software purchases. Software users should
consider themselves software testers.

References

1) Gilman, J. (1991). Use test criteria to ensure client acceptance. Systems Integration 24 (2): 54.
2} Hancock, B. (1992). Confessions of a testing fanatic. Digital News and Review 9(21): 46.
3) Beizer, B. (1990). Software Testing Techniques, 2nd edition. New York: Van Nostrand Reinhold.

187

